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Introduction 
 
 Among the most fundamental cognitive processes are classification and 
recognition.  In classification, people group distinct object into categories.  In 
recognition, people make judgments about whether objects are old or new.  A wide 
variety of formal models have been proposed to capture the cognitive processes that 
underlie categorization and recognition decision making.  The central theme of the 
present work was to use varieties of response-time data to develop stronger tests and 
contrasts among these competing classes of formal models. 
 
 In the domain of categorization, a key preliminary issue concerns that nature of 
the classification task that needs to be performed.  In many cases involving natural 
categories found in the real world, it appears that no simple rules and definitions exist for 
deciding category membership.  Instead, categories appear to be held together by a 
similarity-based family-resemblance structure.  One of the major psychological models of 
human classification performance in these domains is Nosofsky’s (1986) generalized 
context model (GCM), which posits that people represent categories by storing individual 
exemplars of the categories in memory, and classify objects according to their similarity 
to these stored exemplars.  The GCM has also been extended to account for classification 
response-time (RT) data in the form of Nosofsky and Palmeri’s (1997) exemplar-based 
random walk (EBRW) model.  In the EBRW model, retrieved exemplars drive a random-
walk evidence-accumulation process that leads to classification decisions.  Numerous 
tests of the EBRW model have been reported in the classification literature. 
 
 A key theme of this exemplar-based modeling is that there may be close relations 
between the fundamental processes of classification and old-new recognition.  In the 
present project, this theme was pursued by developing an extended version of the EBRW 
model that is applicable to predicting old-new recognition RTs and by providing 
extensive tests of this new model in a variety of memory-search paradigms.  
 
 The second major theme of research was to examine classification performance in 
domains in which categories are well described in terms of simple logical rules.  A 
natural idea is that people may use such rules as a basis of classification in such domains.  
Remarkably, however, few attempts have been made in the past literature to develop 
rigorous predictions of what RT data should look like if these logical-rules are being 
used.  The goal of the present research project was to fill that gap, develop a formal set of 
logical-rule models of classification RTs, and provide extensive empirical tests of this 
new set of models. 



 
Scientific Objectives of Research 
 
 One of the classic ideas in cognitive psychology and cognitive science is that 
people develop and use logical rules as a basis for classifying objects into logically-
defined categories.  However, a variety of very general alternative models of human 
classification performance have been developed, including exemplar models and 
connectionist models, which can also account for classification performance in domains 
involving rule-based categories.  In general, it has been difficult to distinguish among the 
formal predictions of such models based on analysis of choice-probability and accuracy 
data alone. 
 
 Remarkably, there have been few attempts to develop rigorous predictions of 
what response-time (RT) data should look like if people are using logical rules as a basis 
for classification.  Because RT data often open windows into cognitive processing that 
would not be evident based on analysis of choice-probability data alone, pursuing such an 
avenue could yield great insights into the nature of people’s category representations and 
processing strategies in cases involving rule-described categories.  Thus, a major 
objective of this research was to develop and formalize a set of logical-rule models of 
classification, provides tests of such models in a variety of empirical domains, and 
develop contrasts between these models and alternative models of human classification 
performance. 
 
 A key issue in pursuing this objective, however, is that a wide variety of 
processing strategies might underlie the use and application of logical rules.  For 
example, in cases in which rules are defined along multiple dimensions, the observer 
needs to make decisions about a test stimulus’s value along each of those dimensions, 
and then needs to combine those separate decisions to determine if the overall 
classification rule has been satisfied.  As detailed in the technical-approach section, to 
formulate the logical-rule models, one therefore needs to specify both the time course of 
processing along each of the individual dimensions, as well as specify the process by 
which those separate decisions are combined.  Furthermore, designs are needed that allow 
one to distinguish between the predictions of rule models with these differing processing 
architectures, as well as to distinguish the class of rule models from important competing 
models. 
 
 As noted in the introduction section, many categories in the natural world do not 
appear to be organized in terms of simple logical rules, and much different classification 
strategies may be adopted in those situations.  One of the most well known formal models 
of human classification in such domains is Nosofsky’s (1986) exemplar-based GCM, 
which Nosofsky and Palmeri (1997) extended to account for classification RTs by 
developing their exemplar-based random-walk (EBRW) model.   A long-standing theme 
of exemplar-based modeling of classification is that there may be close relations between 
the processes of classification and old-new recognition, because both may be based on 
evaluating the similarity of test objects to old exemplars stored in memory.  However, 
there have been few attempts to extend and apply the EBRW model in the domain of 



recognition RTs, and those initial tests were very limited.  A major objective of the 
present work was to develop a more fully specified and rigorous version of the EBRW 
model and to apply it in a variety of domains involving memory search and recognition 
RT data.  A further objective was to obtain rigorous tests of the EBRW-recognition 
model, using both classic data sets and new empirical tests, and thereby further the goal 
of developing a unified theoretical account of the processes of categorization and 
recognition. 
 



Technical Approach 
 
 The formalization of the logical rule-based models of classification RT involved 
an integration of decision-bound models of classification; random-walk evidence-
accumulation models of decision making; and alternative architectures of information-
processing for combining decisions across multiple dimensions.  Furthermore, an 
experimental paradigm was developed that allowed one to develop strong qualitative 
contrasts among different members of the class of logical rule-based models at the level 
of mean RTs and through examination of detailed RT-distribution data.   
 
 An illustration of the main experimental paradigm and a sketch of part of the 
complete theory is illustrated in Figures 1 and 2 below. 
 
 
 

 
 
As shown in Figure 1, the stimuli varied along two continuous dimensions with three 
values per dimension, combined orthogonally.  Membership in the “target” category (A) 
is defined by a conjunctive rule:  A stimulus is a member of Cat. A if it has value greater 
than or equal to x1 on Dimension X and has value greater than or equal to y1 on 
Dimension Y.  Membership in the “contrast” category (B) is defined by a complementary 
disjunctive rule:  A stimulus is a member of Cat. B it it has value less than x1 on 
Dimension X or less than y1 on Dimension Y.  Decision making on each dimension was 
presumed to be governed by a perceptual sampling process that drove a random walk.    
For example, as illustrated in Figure 2, each value on Dimension X was assumed to give 
rise to a perceptual distribution, and the observer was presumed to divide the perceptual 
space into response regions (A vs. B) by setting a criterion (decision bound) on that 
dimension.  This component of the modeling leads to the well known finding that 



stimulus values farther from the decision bound (e.g., x2 in Figure 2) would lead to faster 
and more accurate decisions along that dimension.  

 
To make a categorization response, the decisions along each individual dimension need 
to be combined to determine which logical rule is satisfied.   For example, an object is 
judged to be a member of the target category only if both the X and Y random walks lead 
to Region-A decisions.  The general theory made allowance for the possibility that the 
dimensions were processed in either serial, parallel, or coactive fashion; and that either a 
self-terminating or exhaustive stopping rule was used.  As explained in the Progress and 
Results section, the paradigm yields sharply contrasting predictions of patterns of 
classification RTs depending on which information-processing architecture underlies the 
rule-based classification decisions. 
 
Part 2:  Space limitations allow me to provide only a sketch of the extensions of the 
EBRW model to the domain of old-new recognition RTs.  As in the standard model, 
items from a study list are presumed to be stored as individual exemplars in memory.  
The exemplars are represented as points in a multidimensional similarity space.  Based on 
factors such as recency of presentation, the exemplars reside in memory with differing 
strengths.  In the extended recognition model, we imagine that “background” or 
“criterion” elements also exist in memory, with strengths that are, at least in part, under 
the control of the observer.  When a test item is presented, it causes the stored exemplars 
to be activated.  The activation is determined jointly by the memory strength of the 
exemplar and its similarity to the test item.  The exemplars and criterion elements race to 
be retrieved with rates proportional to their activations.  If an old exemplar is retrieved, a 
random walk process steps toward an “old” response threshold; whereas if a criterion 
element is retrieved, the random walk steps toward a “new” response threshold.  The 
retrieval process continues until one of the response thresholds is reached.  The RT is 
determined by the time that it takes the random walk to reach one of the thresholds. 
  



Progress Made and Results Obtained 
 
Logical-Rule Model Project.  As  noted in the Technical Approach section, the Figure-1 
paradigm used for testing the logical-rule models allowed one to derive sharply 
contrasting qualitative predictions of performance from the different candidate 
architectures, as well as to contrast the predictions of the rule models from major 
alternatives.  The predictions at the level of mean RTs are shown schematically in Figure 
3 (next page).  The crucial point is that, combined across the target and contrast 
categories, each individual logical-rule model of classification RT yields its own unique 
signature of performance, so the paradigm is highly diagnostic.  In addition, through use 
of detailed RT-distribution data and analyses, one can even discriminate between the 
predictions of the rule models and extremely general single-channel models of RT data 
that do not include concepts of serial or parallel processing.  (It should be noted that the 
qualitative tests derived for the models extended significantly an earlier diagnostic 
battery that had been developed by Townsend and his colleagues.) 
 
The general theory was tested in a wide variety of experiments.  In the initial presentation 
of the general theory, Fific, Little and Nosofsky (2010)  conducted validation tests in 
which subjects were given explicit instructions to use a particular serial self-terminating 
logical-rule strategy in which the dimensions were to be processed in a fixed order.  In 
order to facilitate the use of this strategy, the experiment involved use of highly 
separable-dimension stimuli in which the relevant parts of the stimuli were presented in 
non-overlapping spatial locations.  The resulting patterns of mean RTs and detailed fits of 
the models to the individual-subject RT-distribution data provided strong support for the 
fixed-order serial self-terminating rule model.  In more interesting empirical tests, Little, 
Nosofsky, and Denton (2011) had subjects engage in free-strategy classification.  In one 
experiment, they used the same non-overlapping separate-parts stimuli as did Fific et al. 
(2011).  In a second experiment, they tested stimuli composed of separable dimensions 
that were presented in overlapping spatial locations of the display.  In the separate-
locations design, the results again pointed decidedly to a serial self-terminating logical-
rule strategy, with some subjects processing the dimensions in a fixed order across trials, 
and other subjects processing in a mixed order.  The individual-subject mean RTs from 
that experiment are displayed in Figure 4.  Comparing to Figure 3 (see next pages), it can 
be seen that the results point decidedly toward the serial self-terminating models.  By 
contrast, in the experiment involving separable dimensions that occupied overlapping 
spatial locations, strong support was still obtained for the logical rule models, but now 
with the processing architecture involving a mix of serial and parallel self-terminating 
processing.  Finally, in a third major set of studies, Little, Nosofsky, Donkin and Denton 
(in press) tested the paradigm using highly integral-dimension stimuli.  In accord with 
their predictions, the pattern of mean RTs as well as the detailed fits to the RT-
distribution data now pointed decidedly toward a coactive processing architecture, in 
which information from the individual dimensions was pooled into a common processing 
channel. 
 
(Progress Section is continued following Figures 3 and 4.) 
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Figure 4 
 
 

Participant Ll 
1000.-------------------------~ 

1600 
(j) 
.§. 1400 
1-a: 1200 
c: 
l1! 1000 
~ 

000 

000 

~ t low (D2) 
~-Hi h tD2) 

D1 

Participant L2 

1100 
~w(D2) 

1000 gh tD2l 
(j) 

~ 
.§. 900 
I-

000 a: 
c: 
$ 700 

···-······-............ .., ~ 
600 

500 l. H 
D1 

Participant L3 

1400 
l - Low(D2) 

1300 ~-High {D2) 
(j) 
.§. 1200 
I-a: 1100 
c: 0..---------------.... ______ 0 :g1ooo 
~ 

900 

000 
H 

D1 

Participant L4 

1400 

_1200 
(J) 

E 
~1000 

II: 
mOOD 
~BOO 

400 

.____ 1= Low (D2) 
~-High (D2) 

0.. .. ___________________ _ 
- -o 

H 
D1 

800 

60QL---~R~------~~~-------E~--~ 

l nterior-Elderior 

1100 
-<>- First 

1000 -+- Second 
(j) o Rcdt.rdant 

~ .§. 900 

II: 000 
c: 
$ 700 
~ 0 

~ 600 

500 il I E 
l nterlor-Elderior 

1400 
-<>-First J 

1300 -+-Second 
(j) o Redt.ndant 

~ .§. 1200 

II: 1100 
c: 0 

~ al 1000 
~ 

900 

BOO 
R I E 

Interior-Exterior 

Figure 5. Experiment I: Observed mean response times (RTs) for the i ndividual participants and stimuli. T he 
left panels show the results for the target-category stimuli. and the right panels show the results for the 
contrast-category sti muli. Part icipants are referred to as LI -LA. in which the L designates the lamp-stimuli 

experiment. Left panels: L = low-cli;criminability dime11>ion value: H = high-di;cr iminabi lity dimension value: 
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exterior sti mulus. For case in making comparisons with the prediction graphs in Figure 3. the contrast-category 
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as defined in the text. 



 
Recognition Response Times Project.   
 
The EBRW model of categorization RTs was extended to account for varieties of 
recognition-based and categorization-based memory search.  The nature of the extensions 
was outlined in the Technical Approach section.  The extended theory was tested in 
several new studies. 
 
In the major paper (Nosofsky, Little, Donkin, & Fific, 2011; see also Donkin & 
Nosofsky, 2012a), we showed that the EBRW accounted in natural fashion for wide 
varieties of phenomena from classic short-term memory scanning studies.  Furthermore, 
we illustrated that the model also accounted in natural fashion for performance in 
extended versions of memory-scanning paradigms that involved memorized stimuli 
embedded in continuous-dimension similarity spaces.  For example, in Experiment 1 of 
Nosofsky et al. (2011), the stimuli were a set of 27 Munsell colors varying along 
dimensions of hue, saturation, and brightness.   Similarity-scaling studies were used to 
derive a multidimensional scaling (MDS) solution for the colors to precisely measure 
their similarities.  In an independent memory-scanning experiment, 300 different 
memory/test lists were constructed.  The lists varied in memory set size (1-4 items); 
whether the test probe was old or new; and, if old, the lag with which the test probe was 
presented on the study list.  Colors were randomly sampled from the stimulus space to 
construct the lists, thereby providing an extremely comprehensive test of the model.  
Three observers engaged in the memory-scanning experiment for 20 sessions, with each 
of the individual memory/tests lists presented once per session.  The model yielded very 
similar results for the three subjects, so the main analyses considered performance 
averaged across the subjects.  The summary results from the experiment are displayed in 
Figure 5.  The top panels plot observed performance, whereas the bottom panels show 
predictions from the model.  It can be seen that the model captures in extremely accurate 
fashion how mean RTs and error rates vary as a function of the variables of memory set 
size, old/new status of the test probe, and lag.  Moreover, as shown by Nosofsky et al. 
(2011), the model also captured reasonably well the mean RTs and error rates associated 
with each of the individual 300 lists.  These data varied considerably across different 
tokens of the individual lists, because of their hugely varying similarity structures.  Thus, 
the ability of the EBRW model to capture performance at this individual-list level is an 
extremely important achievement. 
 
 In another study, Donkin and Nosofsky (2012b) showed that the exemplar-based 
evidence-accumulation model accounted extremely accurately for detailed RT-
distribution data associated with hits, misses, false alarms and correct rejections in a 
memory-scanning experiment involving longer lists.  Furthermore, an interesting 
discovery was that the model provided a parsimonious account of the complete set of data 
by assuming that memory strength of the stored exemplars was a power function of their 
lag of presentation.  A goal of future research is to ascertain the detailed psychological 
mechanisms that may give rise to this discovered power law of memory strength. 
 



 

 
 
Figure 5 
 
 
 



4.  Significance of Results and Impact on Science 
 
 
Part 1:  Logical Rule Models of Classification Response Times 
 
One of the classic ideas in cognitive psychology and cognitive science is that people may 
formulate and evaluate logical rules as a basis for classifying objects into rule-defined 
categories.  Despite the idea’s long history, researchers have not developed theories that 
would allow them to predict what classification RTs should look like if people are indeed 
using these rule-based strategies.  Because it is often extremely difficult to distinguish 
between alternative models based on examination of choice-probability data alone, the 
use of RT data can open new windows into the decision-making mechanisms that 
underlie categorization behavior.  This research was the first to formulate rigorously-
defined models of logical-rule-based classification RTs.  An important aspect of the 
formalization involved the idea that a variety of information-processing mechanisms may 
underlie the application of the logical rules.   A paradigm was developed that allowed one 
to test the rule models against major alternatives, and that allowed one to diagnose the 
particular information-processing architecture that may have mediated the rule-based 
decisions.  The experiments provided strong support for the general logical-rules 
framework, and yielded a highly interpretable pattern of results for how information-
processing architectures varied across conditions.  The theory and methods now provide 
extremely valuable tools for better understanding the nature of the representations and 
psychological processes that underlie rule-based categorization decision making. 
 
Part 2:   Memory Scanning Viewed as Exemplar-Based Categorization 
 
Whereas the emphasis in the Part-1 studies was on rule-based forms of categorization, in 
the Part-2 project the emphasis was on exemplar-based forms of categorization and how 
these might be related to basic memory processes.  The exemplar-based random-walk 
model, which has been applied successfully to varieties of categorization RT data in past 
work, was extended to the domain of short-term memory scanning.  Remarkably, the 
model provided natural accounts of wide varieties of results involving the time course of 
memory-based decision making.  The work suggests the intriguing possibility that the 
cognitive processes that are involved in forming categories and in probing memory may 
be very closely related.  
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